SSLC CLASS NOTES - CHAPTER 8

Polynomials

Yakub Koyyur
GOVERNMENT HIGHSCHOOL NADA Email:yhokkila@gmail.com Ph:9008983286

SSLC CLASS NOTES - CHAPTER 8

Polynomials

$P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \ldots \ldots . .+a_{n} x^{n}$
X - Variable, n - Positive number, $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3},--------$ Constants. Variables should be non-negative
Degree of a polynomials:
The highest exponent of the variable in a polynomial is called its degree.
Constant polynomial:The polinomials of the form $f(x)=10$ zero polynomial: The constant polynomial 0 or $\mathrm{f}(\mathrm{x})=0$

Zero of a polynomial:
If $\mathrm{p}(\mathrm{x})$ is a polynomial and k is any real number such that $\mathrm{p}(\mathrm{k})=$ O , then k is called a zero of the polynomial $\mathrm{p}(\mathrm{x})$.
Example: The zeros of $f(x)=x^{2}-5 x+6$ is 2 and 3 .
Becouse $\mathrm{f}(2)=0$ and $\mathrm{f}(3)=0$
Division algorithm for polynomial: $\mathbf{P}(\mathbf{x})=\mathbf{g}(\mathbf{x}) \cdot \mathbf{q}(\mathbf{x})+\mathbf{r}(\mathbf{x})$
$\mathrm{P}(\mathrm{x})=$ Dividend, $\mathrm{g}(\mathrm{x})=$ Divisor, $\mathrm{q}(\mathrm{x})=$ quotient, $\mathrm{r}(\mathrm{x})=$ remainder
Remainder Therorem:
If a polynomial $p(x)$ is divided by a linear polynomial $(x-a)$, then the remainder is $p(a)$
If $p(x)$ is divided by $(x+a)$, then the remainder is $p(-a)$
If $\mathrm{p}(\mathrm{x})$ is divided by $(\mathrm{ax}+\mathrm{b})$, then the remainder is $\mathrm{P}\left(\frac{-b}{a}\right)$.
Factor Theroem: If $p(a)=0$, then $(x-a)$ is a factor of $p(x)$.
When $(x-a)$ is a factor of $p(x)$, then $p(a)=0$

SSLC CLASS NOTES - CHAPTER 8

ILLUSTRATIVE PROBLEMS

Example1: Find the zeroes of the quadratic polynomial $x^{2}+14 x+48$ and verify them
The given polynomial is $x^{2}+14 x+48$.
Sol: By factorising the quadratic polynomial we get,
$x^{2}+14 x+48=(x+8)(x+6)$
The value of $x^{2}+14 x+48$ is zero, When $x+8=0$ or $x+6=0$.
$\Rightarrow \mathrm{x}=-8$ or $\mathrm{x}=-6$
The zeroes of the polynomial $x^{2}+14 x+48$ are (-8) and (-6).
Let us verify the results by substituting the values.
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+14 \mathrm{x}+48=(-8)^{2}+14(-8)+48=64-112+48=0 \Rightarrow \mathrm{p}(-8)=0$
$p(-6)=(-6)^{2}+14(-6)+48=36-84+48 \Rightarrow p(-6)=0$
Example2: Find the zeroes of the polynomial $x^{2}-3$ and verify them
$p(x)=x^{2}-3$ By factorisation, $x^{2}-3=x^{2}-(\sqrt{3})^{2}=(x+\sqrt{3})(x-\sqrt{3})$
So, the value of $\left(x^{2}-3\right)$ is zero when $x=\sqrt{3}$ and $x=-\sqrt{3}$
\therefore the zeroes of $\left(x^{2}-3\right)$ are $\sqrt{3}$ and $-\sqrt{3}$
Verification: $\mathrm{P}(\sqrt{3})=(\sqrt{3})^{2}-3=3-3=0$
$P(-\sqrt{3})=(-\sqrt{3})^{2}-3=3-3=0$

Exercise 8.1

1. Find the degree of the following polynomials.

Sl.No.	Polynomials	Degree
(i)	$x^{2}-9 x+20$	2
(ii)	$2 x+4+6 x^{2}$	2
(iii)	$x^{3}+2 x^{2}-5 x-6$	3
(iv)	$x^{3}+17 x-21-x^{2}$	3
(v)	$\sqrt{3} x^{3}+19 x+14$	3

2. If $f(x)=2 x^{3}+3 x^{2}-11 x+6$ then find the value of (i) $f(0)$ (ii) $f(1)$ (iii) $f(-1)$ (iv) $f(2)$ (v) $f(-3)$.
$f(x)=2 x^{3}+3 x^{2}-11 x+6$
(i) $f(0)=2(0)^{3}+3(0)^{2}-11(0)+6$
$f(0)=0+0-0+6$
$f(0)=6$
(ii) $f(1)=2(1)^{3}+3(1)^{2}-11(1)+6$
$f(1)=2(1)+3(1)-11(1)+6$
$f(1)=2+3-11+6$
$f(1)=11-11$
$f(1)=0$
(iii) $f(-1)=2(-1)^{3}+3(-1)^{2}-11(-1)+6$
$\mathrm{f}(-1)=-2+3+11+6$
$\mathrm{f}(-1)=18$
(iv) $f(2)=2(2)^{3}+3(2)^{2}-11(2)+6$
$f(2)=2(8)+3(4)-11(2)+6$
$\mathrm{f}(2)=16+12-22+6$
$\mathrm{f}(2)=12$
Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286

SSLC CLASS NOTES - CHAPTER 8

(v) $f(-3)=2(-3)^{3}+3(-3)^{2}-11(-3)+6$
$f(-3)=2(-27)+3(9)-11(-3)+6$
$f(-3)=-54+27+33+6$
$f(-3)=12$
3. Find the values of the following polynomials.
(i) $g(x)=7 x^{2}+2 x+14$ when $x=1$
$g(x)=7 x^{2}+2 x+14$
$\Rightarrow \mathrm{g}(1)=7(1)^{2}+2(1)+14$
$\Rightarrow \mathrm{g}(1)=7+2+14$
$\Rightarrow g(1)=23$
(ii) $p(x)=-x^{3}+x^{2}-6 x+5$ when $x=2$
$p(2)=-(2)^{3}+(2)^{2}-6(2)+5$
$p(2)=-8+4-12+5$
$p(2)=-20+9$
$p(2)=-11$
(iii) $P(x)=2 x^{2}+\frac{1}{4} x+13$ when $x=-1$
$\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}+\frac{1}{4} \mathrm{x}+13$
$\mathrm{p}(-1)=2(-1)^{2}+\frac{1}{4}(-1)+13$
$\mathrm{p}(-1)=2-\frac{1}{4}+13$
$\mathrm{p}(-1)=\frac{8-1+52}{4}$
$\mathrm{p}(-1)=\frac{59}{4}$
(v) $p(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$ when $x=-2$
$\mathrm{p}(-2)=2(-2)^{4}-3(-2)^{3}-3(-2)^{2}+6(-2)-2$
$\mathrm{p}(-2)=2(16)-3(-8)-3(4)+6(-2)-2$
$\mathrm{p}(-2)=32+24-12-12-2$
$\mathrm{p}(-2)=32-2$
$p(-2)=30$
4. Verify whether the indicated numbers are zeroes of the polynomials in each of the following cases.
(i) $f(x)=3 x+1, x=\frac{-1}{3}$
$f\left(\frac{-1}{3}\right)=3\left(\frac{-1}{3}\right)+1$
$\mathrm{f}\left(\frac{-1}{3}\right)=-1+1$
$\mathrm{f}\left(\frac{-1}{3}\right)=0$
$\therefore \mathrm{x}=\frac{-1}{3}$ is the Zero of $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+1$.
(ii) $p(x)=x^{2}-4, x=2$ and $x=-2$

If $x=2$ then,
$p(2)=2^{2}-4$
$p(2)=4-4$
$p(2)=0$
If $x=-2$ then,
$p(-2)=(-2)^{2}-4$
Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286

SSLC CLASS NOTES - CHAPTER 8

$\mathrm{p}(-2)=4-4$
$\mathrm{p}(-2)=0$
$\therefore \mathrm{x}=2$ and -2 are the zeros of $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-4$.
(iii) $g(x)=5 x-8, x=\frac{4}{5}$
$g\left(\frac{4}{5}\right)=5\left(\frac{4}{5}\right)-8$
$\mathrm{g}\left(\frac{4}{5}\right)=4-8$
$\mathrm{g}\left(\frac{4}{5}\right)=-4$
$\therefore \mathrm{x}=\frac{4}{5}$ is the zero of $\mathrm{g}(\mathrm{x})=5 \mathrm{x}-8$.
(iv) $p(x)=3 x^{3}-5 x^{2}-11 x-3, x=3, x=-1$ and $x=\frac{-1}{3}$

If $x=3$ then,
$\mathrm{p}(3)=3(3)^{3}-5(3)^{2}-11(3)-3$
$\mathrm{p}(3)=3(27)-5(9)-11(3)-3$
$\mathrm{p}(3)=81-45-33-3$
$p(3)=81-81$
$p(3)=0$
$\therefore \mathrm{x}=3$ is the zero of $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{3}-5 \mathrm{x}^{2}-11 \mathrm{x}-3$.
$x=-1$ then,
$\mathrm{p}(-1)=3(-1)^{3}-5(-1)^{2}-11(-1)-3$
$p(-1)=3(-1)-5(1)-11(-1)-3$
$\mathrm{p}(-1)=-3-5+11-3$
$p(-1)=-11+11$
$\mathrm{p}(-1)=0$
$\therefore \mathrm{x}=-1$ is the zero of $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{3}-5 \mathrm{x}^{2}-11 \mathrm{x}-3$.
If $x=\frac{-1}{3}$ then,
$\mathrm{p}\left(\frac{-1}{3}\right)=3\left(\frac{-1}{27}\right)-5\left(\frac{1}{9}\right)-11\left(\frac{-1}{3}\right)-3$
$\mathrm{p}\left(\frac{-1}{3}\right)=\left(\frac{-1}{9}\right)-\left(\frac{5}{9}\right)+\left(\frac{11}{3}\right)-3$
$\mathrm{p}\left(\frac{-1}{3}\right)=\frac{-1}{9}-\frac{5}{9}+\frac{33}{9}-\frac{27}{9}$
$\mathrm{p}\left(\frac{-1}{3}\right)=\frac{-33}{9}+\frac{33}{9}$
$\mathrm{p}\left(\frac{-1}{3}\right)=\frac{-33+33}{9}$
$\mathrm{p}\left(\frac{-1}{3}\right)=0$
$\therefore \mathrm{x}=\frac{-1}{3}$ is the zero of $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{3}-5 \mathrm{x}^{2}-11 \mathrm{x}-3$
5. Find the zeroes of the following quadratic polynomials and verify.
(i) $f(x)=x^{2}+4 x+4$
$=x^{2}+2 x+2 x+4$
$=\mathrm{x}(\mathrm{x}+2)+2(\mathrm{x}+2)$
$=(\mathrm{x}+2)(\mathrm{x}+2)$
If $x^{2}+4 x+4=0$ then $x+2=0$
If $x+2=0$ then $x=-2$ is the zero of $f(x)=x^{2}+4 x+4$
Verification:
Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286

SSLC CLASS NOTES - CHAPTER 8

$$
\begin{aligned}
& \quad \mathrm{f}(-2)=(-2)^{2}+4(-2)+4 \\
& \mathrm{f}(2)=4-8+4 \\
& \mathrm{f}(2)=8-8 \\
& \mathrm{f}(2)=0 \\
& \text { (ii) } \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-15 \\
& =\mathrm{x}^{2}-5 \mathrm{x}+3 \mathrm{x}-15 \\
& =\mathrm{x}(\mathrm{x}-5)+3(\mathrm{x}-5) \\
& \\
& =(\mathrm{x}-5)(\mathrm{x}+3)
\end{aligned}
$$

If $x^{2}+4 x+4=0$ then $x-5=0$ or $(x+3)=0$
If $x-5=0$ then $x=5$ and $\operatorname{If}(x+3)=0$ then $x=-3$ are the zeros of $f(x)=x^{2}-2 x-15$ Verification,
$f(5)=5^{2}-2(5)-15$
$\mathrm{f}(2)=25-10-15$
$\mathrm{f}(2)=25-25$
$\mathrm{f}(2)=0$
$f(3)=(-3)^{2}-2(-3)-15$
$\mathrm{f}(2)=9+6-15$
$\mathrm{f}(2)=15-25$
$\mathrm{f}(2)=0$
(iii) $f(a)=4 a^{2}-49$
$=(2 a)^{2}-7^{2}$
$=(2 a+7)(2 a-7)$
If $4 a^{2}-49=0$ then $2 a+7=0$ or $(2 a-7)=0$
If $2 \mathrm{a}+7=0$ then $2 \mathrm{a}=-7 \Rightarrow \mathrm{a}=\frac{-7}{2}$ and if $(2 \mathrm{a}-7)=0$ then $2 \mathrm{a}=7 \Rightarrow \mathrm{a}=\frac{7}{2}$ are the zeros of $f(a)=4 a^{2}-4$
Verification,
$\mathrm{f}(\mathrm{a})=4 \mathrm{a}^{2}-49$
$f\left(\frac{-7}{2}\right)=4\left(\frac{-7}{2}\right)^{2}-49$
$\mathrm{f}\left(\frac{-7}{2}\right)=4\left(\frac{49}{4}\right)-49$
$\mathrm{f}\left(\frac{-7}{2}\right)=49-49$
$\mathrm{f}\left(\frac{-7}{2}\right)=0$
$\mathrm{f}(\mathrm{a})=4 \mathrm{a}^{2}-49$
$f\left(\frac{7}{2}\right)=4\left(\frac{7}{2}\right)^{2}-49$
$\mathrm{f}\left(\frac{-7}{2}\right)=4\left(\frac{49}{4}\right)-49$
$\mathrm{f}\left(\frac{-7}{2}\right)=49-49$
$f\left(\frac{-7}{2}\right)=0$
(iv) $f(a)=2 a^{2}-2 \sqrt{2} a+1$
$(\sqrt{2} a)^{2}-2 \sqrt{2} a+1$
$(\sqrt{2} a-1)^{2}$
$(\sqrt{2} a-1)^{2}$

If $f(a)=2 a^{2}-2 \sqrt{2} a+1=0$ then $\sqrt{2} a-1=0 \Rightarrow \sqrt{2} a=1 \Rightarrow a=\frac{1}{\sqrt{2}}$
Verification,
$f(a)=2 a^{2}-2 \sqrt{2} a+1$
$f\left(\frac{1}{\sqrt{2}}\right)=2\left(\frac{1}{\sqrt{2}}\right)^{2}-2 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)+1$
$\mathrm{f}\left(\frac{1}{\sqrt{2}}\right)=2\left(\frac{1}{2}\right)-2+1$
$\mathrm{f}\left(\frac{1}{\sqrt{2}}\right)=1-2+1$
$\mathrm{f}\left(\frac{1}{\sqrt{2}}\right)=2-2$
$\mathrm{f}\left(\frac{1}{\sqrt{2}}\right)=0$
6. If $x=1$ is the zero of the polynomial $f(x)=x^{3}-2 x^{2}+4 x+k$ find the value of k.
$x=1$ is the zero of $f(x)=x^{3}-2 x^{2}+4 x+k$
$\therefore \mathrm{f}(1)=1^{3}-2(1)^{2}+4(1)+\mathrm{k}=0$
$1-2+4+\mathrm{k}=0$
$1-2+4+\mathrm{k}=0$
$3+\mathrm{k}=0$
$k=-3$
7. For what value of $k,-4$ is the zero of polynomial $x^{2}-x-(2 k+2)$.
$f(x)=x^{2}-x-(2 k+2)$
$\mathrm{f}(-4)=0$
$(-4)^{2}-(-4)-(2 \mathrm{k}+2)=0$
$16+4-(2 k+2)=0$
$20-(2 k+2)=0 \Rightarrow 2 k+2=20$
$2 \mathrm{k}=20-2 \Rightarrow \mathrm{k}=\frac{18}{2} \Rightarrow \mathbf{k}=9$

ILLUSTRATIVE EXAMPLES

Example1: On dividing $3 x^{3}+x^{2}+2 x+5$ by a polynomial $g(x)$, the quotient and remainder are $(3 x-5)$ and $(9 x+10)$ respectively. Find $g(x)$.
Sol: $\mathrm{p}(\mathrm{x})=[\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})]+\mathrm{r}(\mathrm{x})$ [Division algorithm for polynomials]
$\Rightarrow \mathrm{g}(\mathrm{x})=\frac{\mathrm{p}(\mathrm{x})-\mathrm{r}(\mathrm{x})}{\mathrm{q}(\mathrm{x})}$
$\Rightarrow \mathrm{g}(\mathrm{x})=\frac{\left(3 \mathrm{x}^{3}+\mathrm{x}^{2}+2 \mathrm{x}+5\right)-(9 \mathrm{x}+10)}{(3 \mathrm{x}-5)}$
$\Rightarrow \mathrm{g}(\mathrm{x})=\frac{3 \mathrm{x}^{3}+\mathrm{x}^{2}-7 \mathrm{x}-5}{3 \mathrm{x}-5}$

$3 x-5$	$3 x^{3}+x^{2}-7 x-5$	$x^{2}+2 x+1$
	$3 x^{3}-5 x^{2}$	
	$6 x^{2}-7 x$	
	$6 x^{2}-10 x$	
	$3 x-5$	
	$3 x-5$	
	0	

$\therefore \mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}+1$
Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286

SSLC CLASS NOTES - CHAPTER 8

Example 2: A polynomial $p(x)$ is divided by $(2 x-1)$. The quotient and remainder obtained are $\left(7 x^{2}+x+5\right)$ and 4 respectively. Find $p(x)$
$\mathrm{p}(\mathrm{x})=[\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})]+\mathrm{r}(\mathrm{x})$ [Division algorithm for polynomials]
$p(x)=(2 x-1)\left(7 x^{2}+x+5\right)+4$
$\mathrm{p}(\mathrm{x})=14 \mathrm{x}^{3}+2 \mathrm{x}^{2}+10 \mathrm{x}-7 \mathrm{x}^{2}-\mathrm{x}-5+4$
$p(x)=14 x^{3}-5 x^{2}+9 x-1$
\therefore the dividend $\mathrm{p}(\mathrm{x})=14 \mathrm{x}^{3}-5 \mathrm{x}^{2}+9 \mathrm{x}-1$
Example3: Find the quotient and remainder on dividing $p(x)=x^{3}-6 x^{2}+15 x-8$ by $g(x)=x-2$
Sol: $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-6 \mathrm{x}^{2}+15 \mathrm{x}-8 \quad \therefore$ degree of $\mathrm{p}(\mathrm{x})$ is 3 .
$g(x)=x-2 \quad \therefore$ degree of $g(x)$ is 1
\therefore degree of quotient $\mathrm{q}(\mathrm{x})=3-1=2$ and degree of remainder $\mathrm{r}(\mathrm{x})$ is zero.
Let, $\mathrm{q}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ (Polynomial of degree 2) and $\mathrm{r}(\mathrm{x})=\mathrm{k}$ (constant polynomial)
By using division algorithm, we have

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=[\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})]+\mathrm{r}(\mathrm{x}) \\
& =\mathrm{x}^{3}-6 \mathrm{x}^{2}+15 \mathrm{x}-8=(\mathrm{x}-2)\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)+\mathrm{k} \\
& =\mathrm{ax} 3+\mathrm{bx} 2+\mathrm{cx}-2 a \mathrm{x}^{2}-2 \mathrm{bx}-2 \mathrm{c}+\mathrm{k} \\
& \therefore \mathrm{x}^{3}-6 \mathrm{x}^{2}+15 \mathrm{x}-8=\mathrm{ax} 3+(\mathrm{b}-2 \mathrm{a}) \mathrm{x}^{2}+(\mathrm{c}-2 \mathrm{~b}) \mathrm{x}-2 \mathrm{c}+\mathrm{k}
\end{aligned}
$$

We have cubic polynomials on both the sides of the equation.
\therefore Let us compare the coefficients of $\mathrm{x}^{3}, \mathrm{x}^{2}, \mathrm{x}$ and k to get the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$. i.e., (i) $\mathrm{a}=1$,
(ii) $\mathrm{b}-2 \mathrm{a}=-6 \Rightarrow \mathrm{~b}-2 \mathrm{x} 1=-6 \Rightarrow \mathrm{~b}-2=-6 \Rightarrow \mathrm{~b}=-6+2 \Rightarrow \mathrm{~b}=-4$
(iii) $\mathrm{c}-2 \mathrm{~b}=15 \Rightarrow \mathrm{c}-2 \mathrm{x}(-4)=15 \Rightarrow \mathrm{c}+8=15 \Rightarrow \mathrm{c}=15-8 \Rightarrow \mathrm{c}=7$
(iv) $-2 \mathrm{c}+\mathrm{k}=-8 \Rightarrow-2 \mathrm{x} 7+\mathrm{k}=-8 \Rightarrow-14+\mathrm{k}=-8 \Rightarrow \mathrm{k}=-8+14 \Rightarrow \mathrm{k}=6$
$\mathrm{q}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=(1) \mathrm{x}^{2}+(-4) \mathrm{x}+7=\mathrm{x}^{2}-4 \mathrm{x}+7$ and $\mathrm{r}(\mathrm{x})=\mathrm{k}=6$
\therefore the quotient is $x^{2}-4 x+7$ and remainder is 6 .
Example 4 : What must be subtracted from $6 x^{4}+13 x^{3}+13 x^{2}+30 x+20$, so that the resulting polynomial is exactly divisible by $3 x^{2}+2 x+5$?
Sol: $\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$ [Division algorithm for polynomials]
$\therefore \mathrm{p}(\mathrm{x})-\mathrm{r}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})$
It is clear that RHS of the above equation is divisible by $\mathrm{g}(\mathrm{x})$. i.e., the divisor.
\therefore LHS is also divisible by the divisor.
Therefore, if we subtract remainder $r(x)$ from dividend $p(x)$, then it will be exactly

SSLC CLASS NOTES - CHAPTER 8

$$
\begin{aligned}
& 3 x^{2}+2 x+5 \quad 6 x^{4}+13 x^{3}+13 x^{2}+30 x+20 \quad 2 x^{2}+3 x-1 \\
& 6 x^{4}+4 x^{3}+10 x^{2} \\
& +9 x^{3}+3 x^{2}+30 x \\
& +9 x^{3}+6 x^{2}+15 x \\
& -3 x^{2}+15 x+20 \\
& -3 x^{2}-2 x-5 \\
& +17 x+25
\end{aligned}
$$

\therefore We get the quotient $2 \mathrm{x}^{2}+3 \mathrm{x}-1$ and the remainder is $+17 \mathrm{x}+25$
\therefore If we substract $+17 x+25$ from $6 x^{4}+13 x^{3}+13 x^{2}+30 x+20$ it will be exactly divisible by $3 x^{2}+2 x+5$
Example 5: What must be added to the polynomial $p(x)=x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the resulting polynomial is exactly divisible by $x^{2}+2 x-3$
we know, $\mathrm{p}(\mathrm{x})=[\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})]+\mathrm{r}(\mathrm{x})$
$\Rightarrow \mathrm{p}(\mathrm{x})-\mathrm{r}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})$
$\Rightarrow \mathrm{p}(\mathrm{x})+\{-\mathrm{r}(\mathrm{x})\}=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})$
Thus, if we add $-r(x)$ to $p(x)$, then the resulting polynomial is divisible by $g(x)$.

| $x^{2}+2 x-3$ |
| :---: |$x^{4}+2 x^{3}-2 x^{2}+x-10$

Hence, we should add $(x-2)$ to $p(x)$ so that the resulting polynomial is exactly dividible by $g(x)$.

Exercise - 8.2

1. Divide $p(x)$ by $g(x)$ in each of the following cases and verify division algorithm.
(i) $p(x)=x^{2}+4 x+4 ; \quad g(x)=x+2$

$\mathbf{x}+\mathbf{2}$	$\mathbf{x}^{2}+4 \mathbf{x}+\mathbf{4}$	$\mathbf{x}+\mathbf{2}$
	$\mathrm{x}^{2}+2 \mathrm{x}$	
	$2 \mathrm{x}+4$	
	$2 \mathrm{x}+4$	
	0	

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+4 \mathrm{x}+4 ; \quad \mathrm{g}(\mathrm{x})=\mathrm{x}+2 ; \mathrm{q}(\mathrm{x})=\mathrm{x}+2 ; \mathrm{r}(\mathrm{x})=0 \\
& \mathrm{~g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x}) \\
& =(\mathrm{x}+2)(\mathrm{x}+2)+0=\mathrm{x}^{2}+4 \mathrm{x}+4=\mathrm{p}(\mathrm{x})
\end{aligned}
$$

(ii) p

x-3	$2 \mathrm{x}^{2}-9 \mathrm{x}+9$	$2 \mathrm{x}-3$
	$2 \mathrm{x}^{2}-6 \mathrm{x}$	
	$-3 x+9$	
	$-3 \mathrm{x}+9$	
	0	

SSLC CLASS NOTES - CHAPTER 8

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}-9 \mathrm{x}+9 ; \mathrm{g}(\mathrm{x})=\mathrm{x}-3 ; \mathrm{q}(\mathrm{x})=2 \mathrm{x}-3 ; \mathrm{r}(\mathrm{x})=0 \\
& \mathrm{~g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})=(\mathrm{x}-3)(2 \mathrm{x}-3)+0 \\
& =2 \mathrm{x}^{2}-6 \mathrm{x}-3 \mathrm{x}+9+0 \\
& =2 \mathrm{x}^{2}-9 \mathrm{x}+9 \\
& =\mathrm{p}(\mathrm{x})
\end{aligned}
$$

(iii) $p(x)=x^{3}+4 x^{2}-5 x+6 ; \quad g(x)=x+1$

$x+1$	$\begin{aligned} & x^{3}+4 x^{2}-5 x+6 \\ & x^{3}+x^{2} \end{aligned}$	$\mathrm{x}^{2}+3 \mathrm{x}-8$
	$\begin{aligned} & 3 x^{2}-5 x \\ & 3 x^{2}+3 x \end{aligned}$	
	$-8 x+6$	
	-8x-8	
	+14	

$\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+4 \mathrm{x}^{2}-5 \mathrm{x}+6$
$g(x)=x+1 ; q(x)=x^{2}+3 x-8 ; r(x)=14$
$\mathrm{g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})=(\mathrm{x}+1)\left(\mathrm{x}^{2}+3 \mathrm{x}-8\right)+14$
$=x^{3}+x^{2}+3 x^{2}+3 x-8 x-8+14$
$=x^{3}+4 x^{2}-5 x+6=p(x)$
(iv) $p(x)=x^{4}-3 x^{2}-4 ; \quad g(x)=x+2$

$\mathrm{p}(\mathrm{x})=\mathrm{x}^{4}-3 \mathrm{x}^{2}-4 ; \mathrm{g}(\mathrm{x})=\mathrm{x}+2$
$\mathrm{q}(\mathrm{x})=\mathrm{x}^{3}-2 \mathrm{x}^{2}+\mathrm{x}-2 ; \mathrm{r}(\mathrm{x})=0$
$\mathrm{g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})=(\mathrm{x}+2)\left(\mathrm{x}^{3}-2 \mathrm{x}^{2}+\mathrm{x}-2\right)+0$
$=x^{4}+2 x^{3}-2 x^{3}-4 x^{2}+x^{2}+2 x-2 x-4$
$=\mathrm{x}^{4}-3 \mathrm{x}^{2}-4=\mathrm{p}(\mathrm{x})$
(v) $p(x)=x^{3}-1 ; \quad g(x)=x-1$

SSLC CLASS NOTES - CHAPTER 8

```
\(\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-1 ; \mathrm{g}(\mathrm{x})=\mathrm{x}-1\)
\(q(x)=x^{2}+x+1 ; r(x)=0\)
\(\mathrm{g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})=(\mathrm{x}-1)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)+0\)
\(=x^{3}-x^{2}+x^{2}-x+x-1\)
\(=\mathrm{x}^{3}-1=\mathrm{p}(\mathrm{x})\)
```

(iv) $p(x)=x^{4}-4 x^{2}+12 x+9 ; \quad g(x)=x^{2}+2 x-3$

$x^{2}+2 x-3$	$x^{4}+0 x^{3}-4 x^{2}+12 x+9$	$x^{2}-2 x+3$
	$x^{4}+2 x^{3}-3 x^{2}$	
	$-2 x^{3}-x^{2}+12 x$	
	$-2 x^{3}-4 x^{2}+6 x$	
	$+3 x^{2}+6 x+9$	
	$3 x^{2}+6 x-9$	
	18	

$p(x)=x^{4}-4 x^{2}+12 x+9 ; g(x)=x^{2}+2 x-3$
$q(x)=x^{2}-2 x+3 ; r(x)=0$
$\mathrm{g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})=\left(\mathrm{x}^{2}+2 \mathrm{x}-3\right)\left(\mathrm{x}^{2}-2 \mathrm{x}+3\right)+18$
$=x^{4}+2 x^{3}-3 x^{2}-2 x^{3}-4 x^{2}+6 x+3 x^{2}+6 x-9+18$
$=x^{4}-4 x^{2}+12 x+9=p(x)$
2. Find the divisor $g(x)$, when the polynomial $p(x)=4 x^{3}+2 x^{2}-10 x+2$ is divided by $g(x)$ and the quotient and remainder obtained are $\left(2 x^{2}+4 x+1\right)$ and 5 respectively.
$\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
$\mathrm{g}(\mathrm{x})=\frac{\mathrm{p}(\mathrm{x})-\mathrm{r}(\mathrm{x})}{\mathrm{q}(\mathrm{x})}$
$g(x)=\frac{4 x^{3}+2 x^{2}-10 x+2-5}{2 x^{2}+4 x+1}$
$g(x)=\frac{4 x^{3}+2 x^{2}-10 x-3}{2 x^{2}+4 x+1}$
$\left.\begin{array}{|c|c|c|}\hline 2 x^{2}+\mathbf{4 x}+1 & \begin{array}{l}4 x^{3}+2 x^{2}-10 x-3\end{array} & 2 x-3 \\ & 4 x^{3}+8 x^{2}+2 x\end{array}\right)$
$g(x)=2 x-3$
3. On dividing the polynomial $p(x)=x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $(x-2)$ and $(-2 x+4)$ respectively. Find $g(x)$.

$$
\begin{aligned}
& p(x)=g(x) \cdot q(x)+r(x) \\
& g(x)=\frac{p(x)-r(x)}{q(x)} \\
& g(x)=\frac{x^{3}-3 x^{2}+x+2-2 x+4}{x-2} \\
& g(x)=\frac{x^{3}-3 x^{2}-x+6}{x-2}
\end{aligned}
$$

SSLC CLASS NOTES - CHAPTER 8

$\mathbf{x}-\mathbf{2}$	$\mathbf{x}^{3}-3 \mathbf{x}^{2}-\mathbf{x}+\mathbf{6}$ $\mathrm{x}^{3}-2 \mathrm{x}^{2}$	$\mathrm{x}^{2}-\mathrm{x}-3$
	$-\mathrm{x}^{2}-\mathrm{x}$	
	$-\mathrm{x}^{2}+2 \mathrm{x}$	
	$-3 \mathrm{x}+6$	
	$-3 \mathrm{x}+6$	
	0	

$g(x)=x^{2}-x-3$
4. A polynomial $\mathrm{p}(\mathrm{x})$ is divided by $\mathrm{g}(\mathrm{x})$, the obtained quotient $\mathrm{q}(\mathrm{x})$ and the remainder $\mathrm{r}(\mathrm{x})$ are given in the table. Find $\mathrm{p}(\mathrm{x})$ in each case.

S.No.	$\mathbf{p (x)}$	$\mathbf{g}(\mathbf{x})$	$\mathbf{q (x)}$	$\mathbf{r}(\mathbf{x})$
\mathbf{i}	$x^{3}-3 x^{2}+3 x+2$	$x-2$	$x^{2}-x+1$	4
ii	$2 x^{3}+7 x^{2}+11 x+16$	$x+3$	$2 x^{2}+x+5$	$3 x+1$
iii	$2 x^{4}+7 x^{3}+x^{2}+x+1$	$2 x+1$	$x^{3}+3 x^{2}-x+1$	0
iv	$x^{4}-2 x^{3}+2 x-3$	$x-1$	$x^{3}-x^{2}-x-1$	$2 x-4$
\mathbf{v}	$x^{6}+2 x^{5}-x^{4}+x^{3}+x^{2}-5 x+5$	$x^{2}+2 x+1$	$x^{4}-2 x^{2}+5 x-7$	$4 x+12$

(i) $\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
$\mathrm{p}(\mathrm{x})=(\mathrm{x}-2)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)+4$
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}^{2}+2 \mathrm{x}+\mathrm{x}-2+4$
$p(x)=x^{3}-3 x^{2}+3 x+2$
(ii) $p(x)=g(x) \cdot q(x)+r(x)$
$\mathrm{p}(\mathrm{x})=(\mathrm{x}+3)\left(2 \mathrm{x}^{2}+\mathrm{x}+5\right)+(3 \mathrm{x}+1)$
$\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{3}+6 \mathrm{x}^{2}+\mathrm{x}^{2}+3 \mathrm{x}+5 \mathrm{x}+15+3 \mathrm{x}+1$
$p(x)=2 x^{3}+7 x^{2}+11 x+16$
(iii) $p(x)=g(x) \cdot q(x)+r(x)$
$p(x)=(2 x+1)\left(x^{3}+3 x^{2}-x+1\right)+0$
$\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{4}+\mathrm{x}^{3}+6 \mathrm{x}^{3}+3 \mathrm{x}^{2}-2 \mathrm{x}^{2}-\mathrm{x}+2 \mathrm{x}+1$
$p(x)=2 x^{4}+7 x^{3}+x^{2}+x+1$
(iv) $p(x)=g(x) \cdot q(x)+r(x)$
$p(x)=(x-1)\left(x^{3}-x^{2}-x-1\right)+2 x-4$
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{4}-\mathrm{x}^{3}-\mathrm{x}^{3}+\mathrm{x}^{2}-\mathrm{x}^{2}+\mathrm{x}-\mathrm{x}+1+2 \mathrm{x}-4$
$p(x)=x^{4}-2 x^{3}+2 x-3$
$\mathrm{p}(\mathrm{x})=\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)\left(\mathrm{x}^{4}-2 \mathrm{x}^{2}+5 \mathrm{x}-7\right)+4 \mathrm{x}+12$
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{6}+2 \mathrm{x}^{5}+\mathrm{x}^{4}-2 \mathrm{x}^{4}-4 \mathrm{x}^{3}-2 \mathrm{x}^{2}+5 \mathrm{x}^{3}+10 \mathrm{x}^{2}+5 \mathrm{x}-7 \mathrm{x}^{2}-14 \mathrm{x}-7+4 \mathrm{x}+12$
$p(x)=x^{6}+2 x^{5}-x^{4}+x^{3}+x^{2}-5 x+5$
5. Find the quotient and remainder on dividing $p(x)$ by $g(x)$ in each of the following cases, without actual division.
(i) $p(x)=x^{2}+7 x+10 ; g(x)=x-2$

The degree of $p(x)=2$

Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286

SSLC CLASS NOTES - CHAPTER 8

The degree of $g(x)=1$
\therefore The degree of $q(x)=2-1=1$
\therefore The degree of $r(x)=1-1=0$
\therefore Let $\mathrm{q}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ and $\mathrm{r}(\mathrm{x})=\mathrm{c}$
$\Rightarrow \mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \cdot \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
$\mathrm{x}^{2}+7 \mathrm{x}+10=(\mathrm{x}-2)(\mathrm{ax}+\mathrm{b})+\mathrm{c}$
$x^{2}+7 x+10=a x^{2}-2 a x+b x-2 b+c$
$x^{2}+7 x+10=a x^{2}-(2 a-b) x-2 b+c$
\therefore Let us compare the coefficients
(i) $a=1$,
(ii) $-2 \mathrm{a}+\mathrm{b}=7 \Rightarrow-2-\mathrm{b}=7 \Rightarrow \mathrm{~b}=9$
(iii) $-2 \mathrm{~b}+\mathrm{c}=10 \Rightarrow-2(9)+\mathrm{c}=10 \Rightarrow-18+\mathrm{c}=10 \Rightarrow \mathrm{c}=10+18=28$
\therefore Quotient $\mathrm{q}(\mathrm{x})=\mathrm{x}+9$ and Remainder $\mathrm{r}(\mathrm{x})=28$
(ii) $p(x)=x^{3}+4 x^{2}-6 x+2 ; g(x)=x-3$

The degree of $p(x)=3$
The degree of $g(x)=1$
\therefore The degree of $\mathrm{q}(\mathrm{x})=3-1=1$
\therefore The degree of $r(x)=1-1=0$
\therefore Let $\mathrm{q}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ and $\mathrm{r}(\mathrm{x})=\mathrm{d}$
$p(x)=g(x) \cdot q(x)+r(x)$
$\mathrm{x}^{3}+4 \mathrm{x}^{2}-6 \mathrm{x}+2=(\mathrm{x}-3)(\mathrm{ax}+\mathrm{bx}+\mathrm{c})+\mathrm{d}$
$x^{3}+4 x^{2}-6 x+2=a x^{3}-3 a x^{2}+b x^{2}-3 b x+c x-3 c+d$
$x^{3}+4 x^{2}-6 x+2=a x^{3}-(3 a-b) x^{2}-(3 b-c) x-3 c+d$
\therefore Let us compare the coefficients,
(i) $\mathrm{a}=1$,
(ii) $-3 \mathrm{a}+\mathrm{b}=4 \Rightarrow-3(1)+\mathrm{b}=4 \Rightarrow-3+\mathrm{b}=4 \Rightarrow \mathrm{~b}=7$
(iii) $3 \mathrm{~b}-\mathrm{c}=6 \Rightarrow 3(7)-\mathrm{c}=6 \Rightarrow 21-\mathrm{c}=6 \Rightarrow-\mathrm{c}=6-21 \Rightarrow \mathrm{c}=15$
(iv) $-3 \mathrm{c}+\mathrm{d}=2 \Rightarrow-3(15)+\mathrm{d}=2 \Rightarrow-45+\mathrm{d}=2 \Rightarrow \mathrm{~d}=2+45 \Rightarrow \mathrm{~d}=47$
\therefore Quotient $\mathrm{q}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$
\therefore Quotient $\mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+7 \mathrm{x}+15$ and remainder $\mathrm{r}(\mathrm{x})=47$
6. What must be subtracted from $\left(x^{3}+5 x^{2}+5 x+8\right)$ so that the resulting polynomial is exactly divisible by $\left(x^{2}+3 x-2\right)$?

$\mathrm{x}^{2}+3 \mathrm{x}-2$	$\mathrm{x}^{3}+5 \mathrm{x}^{2}+5 \mathrm{x}+8$	$\mathrm{x}+2$
	$\mathrm{x}^{3}+3 \mathrm{x}^{2}-2 \mathrm{x}$	
	$2 \mathrm{x}^{2}+7 \mathrm{x}+8$	
	$2 \mathrm{x}^{2}+6 \mathrm{x}-4$	
		$\mathrm{x}+12$

\therefore If we substract $(x+12)$ from $\left(x^{3}+5 x^{2}+5 x+8\right)$ it will be exactly divisible by $\left(x^{2}+3 x-2\right)$
7. What should be added to the polynomial $\left(7 x^{3}+4 x^{2}-x-10\right)$ so that the resulting polynomial is exactly divisible by $\left(2 x^{2}+3 x-2\right)$?

SSLC CLASS NOTES - CHAPTER 8

$x^{2}+2 x+1$	$x^{4}+0 x^{3}+0 x^{2}+0 x-1$	$x^{2}-2 x+3$
$x^{4}+2 x^{3}+x^{2}$		
	$-2 x^{3}-x^{2}+0 x$	
	$-2 x^{3}-4 x^{2}-2 x$	
	$+3 x^{2}+2 x-1$	
	$3 x^{2}+6 x+3$	
	$-4 x-4$	

Hence, we should add $(4 x+4)$ to $p(x)$ so that the resulting polynomial is exactly dividible by $g(x)$

ILLUSTRATIVE EXAMPLES

Example 1: Find the remainder when $p(x)=x^{3}-4 x^{2}+3 x+1$ is divided by $(x-1)$
Sol. By remainder theorem, the required remainder is equal to $p(1)$
$p(x)=x^{3}-4 x^{2}+3 x+1$
$\therefore \mathrm{p}(1)=1^{3}-4(1)^{2}+3(1)+1=1-4+3+1=1$
\therefore the required remainder $=\mathrm{p}(1)=1$
Example2:Find the remainder when $p(x)=x^{3}-6 x^{2}+2 x-4$ is divided by $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-1$
Sol. Here, $g(x)=3 x-1$. To apply Remainder theorem, ($3 x-1$) should be converted to ($\mathrm{x}-\mathrm{a}$) form.
$3 \mathrm{x}-1 \Rightarrow \mathrm{x}-\frac{1}{3} \Rightarrow \mathrm{~g}(\mathrm{x})=\left(\mathrm{x}-\frac{1}{3}\right)$
$p(x)=x^{3}-6 x^{2}+2 x-4$
$\therefore \mathrm{p}\left(\frac{1}{3}\right)=\left(\frac{1}{3}\right)^{3}-6\left(\frac{1}{3}\right)^{2}+2\left(\frac{1}{3}\right)-4=\frac{1}{27}-\frac{6}{9}+\frac{2}{3}-1=\frac{1-18+18-108}{27}=\frac{-107}{27}$
\therefore the required remainder $=p\left(\frac{1}{3}\right)=\frac{-107}{27}$
Example 3: The polynomials $\left(a x^{3}+3 x^{2}-13\right)$ and $\left(2 x^{3}-4 x+a\right)$ are divided by $(x-3)$.
If the remainder in each case is the same, find the value of a
Sol. Letp $(x)=a x^{3}+3 x^{2}-13$ and $g(x)=2 x^{3}-4 x+a$
By remainder theorem, the two remainders are $p(3)$ and $g(3)$ By the given
condition, $p(3)=g(3)$
$\therefore \mathrm{p}(3)=\mathrm{a} .3^{3}+3.3^{2}-13=27 \mathrm{a}+27-13=27 \mathrm{a}+14$
$\mathrm{g}(3)=2.3^{3}-4.3+\mathrm{a}=54-12+\mathrm{a}=42+\mathrm{a}$
Since $p(3)=g(3)$, we get $27 a+14=42+a$
$\therefore 26 a=28 \therefore$
$\Rightarrow \mathrm{a}=\frac{28}{26}=\frac{14}{13}$
Example: 4 Two polynomials $\left(2 x^{3}+x^{2}-6 a x+7\right)$ and $\left(x^{3}+2 a x^{2}-12 x+4\right)$ are divided by $(x+1)$ and ($x-1$) respectively. If R_{1} and R_{2} are the remainders and $2 R_{1}+3 R_{1}=27$, find the value of 'a'
Sol: Letp $(x)=2 x^{3}+x^{2}-6 a x+7$ and $f(x)=x^{3}+2 a^{2}-12 x+4$
R_{1} is the remainder when $p(x)$ is divided by $(x+1)$
Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286
$\therefore \mathrm{P}(-1)=\mathrm{R}_{1}$
$\Rightarrow \mathrm{R}_{1}=2(-1)^{3}+(-1)^{2}-6 \mathrm{a}(-1)+7$
$\Rightarrow R_{1}=-2+1+6 a+7 \Rightarrow R_{1}=6 a+6$
R_{2} is the remainder when $f(x)$ is divided by $(x-1)$
$\therefore \mathrm{f}(1)=\mathrm{R}_{2}$
$\Rightarrow \mathrm{R}_{2}=1^{3}+2 \mathrm{a}(1)^{2}-12(1)+4$
$\Rightarrow \mathrm{R}_{2}=1+2 \mathrm{a}-12+4 \Rightarrow \mathrm{R}_{2}=2 \mathrm{a}-7$
$2 \mathrm{R}_{1}+3 \mathrm{R}_{1}=27 \Rightarrow 2(6 \mathrm{a}+6)+3(2 \mathrm{a}-7)=27 \Rightarrow 12 \mathrm{a}+12+6 \mathrm{a}-21=27$
$\Rightarrow 18 \mathrm{a}-9=27 \Rightarrow 18 \mathrm{a}=36 \Rightarrow \mathrm{a}=2$

Exercise 8.3

I In each of the following cases, use the remainder theorem and find the remainder when $p(x)$ is divided by $g(x)$. Verify the result by actual division.
(i) $p(x)=x^{3}+3 x^{2}-5 x+8 \quad g(x)=x-3$

By Remainder theorem $r(x)=p(3)$
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}-5 \mathrm{x}+8$
$\mathrm{p}(3)=3^{3}+3(3)^{2}-5(3)+8$
$\mathrm{p}(3)=27+3(9)-5(3)+8$
$p(3)=27+27-15+8$
$\mathrm{p}(3)=62-15$
$p(3)=47$
(ii) $\mathrm{p}(\mathrm{x})=4 \mathrm{x}^{3}-10 \mathrm{x}^{2}+12 \mathrm{x}-3 \quad \mathrm{~g}(\mathrm{x})=\mathrm{x}+1$

By Remainder theorem $r(x)=p(-1)$
$\mathrm{p}(\mathrm{x})=4 \mathrm{x}^{3}-10 \mathrm{x}^{2}+12 \mathrm{x}-3$
$\mathrm{p}(-1)=4(-1)^{3}-10(-1)^{2}+12(-1)-3$
$p(3)=-4-10-12-3$
$p(3)=-29$
(iii) $p(x)=2 x^{4}-5 x^{2}+15 x-6 \quad g(x)=x-2$

By Remainder theorem $\quad r(x)=p(2)$
$\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{4}-5 \mathrm{x}^{2}+15 \mathrm{x}-6$
$\mathrm{p}(2)=2(2)^{4}-5(2)^{2}+15(2)-6$
$p(2)=32-5 x 4+30-6$
$p(2)=32-20+30-6$
$p(2)=36$
$p(3)=-29$
(iv) $\mathrm{p}(\mathrm{x})=4 \mathrm{x}^{3}-12 \mathrm{x}^{2}+14 \mathrm{x}-3 \quad \mathrm{~g}(\mathrm{x})=2 \mathrm{x}-1$

By Remainder theorem $r(x)=p\left(\frac{1}{2}\right)$
$\mathrm{p}\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+14\left(\frac{1}{2}\right) \quad-3$
$\mathrm{p}\left(\frac{1}{2}\right)=4\left(\frac{1}{8}\right)-12\left(\frac{1}{4}\right)+14\left(\frac{1}{2}\right)-3$
$\mathrm{p}\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)-3+7-3$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{1}{2}+1$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{1}{2}+\frac{2}{2}$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{3}{2}$
Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286

SSLC CLASS NOTES - CHAPTER 8

(v) $\mathrm{p}(\mathrm{x})=7 \mathrm{x}^{3}-\mathrm{x}^{2}+2 \mathrm{x}-1 \quad \mathrm{~g}(\mathrm{x})=1-2 \mathrm{x}$

By Remainder theorem $r(x)=p\left(-\frac{1}{2}\right)$
$\mathrm{p}\left(\frac{1}{2}\right)=7\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right) \quad-1$
$\mathrm{p}\left(\frac{1}{2}\right)=\left(\frac{7}{8}\right)-\left(\frac{1}{4}\right)+1-1$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{1}{4}$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{7-2}{8}$
$\mathrm{p}\left(-\frac{1}{2}\right)=\frac{5}{8}$
2. If the polynomials $\left(2 x^{3}+a x^{2}+3 x-5\right)$ and $\left(x^{3}+x^{2}-4 x-a\right)$ leave the same remainder when divided by $(x-1)$, find the value of a.
If $g(x)=x-1$ then $r(x)=p(1)$
$\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{3}+\mathrm{ax}^{2}+3 \mathrm{x}-5$
$\mathrm{p}(1)=2(1)^{3}+\mathrm{a}(1)^{2}+3(1)-5$
$p(1)=2+a+3-5$
$p(1)=a----------(1)$
$\mathrm{p}(\mathrm{x})=\left(\mathrm{x}^{3}+\mathrm{x}^{2}-4 \mathrm{x}-\mathrm{a}\right)$
$p(1)=1^{3}+1^{2}-4(1)-a$
$\mathrm{p}(1)=1+1-4-\mathrm{a}$
$p(1)=-2-a--------(2)$
From (1)and (2)
$\mathrm{a}=-2-\mathrm{a}$
$2 \mathrm{a}=-2$
$\mathrm{a}=-1$
3. The polynomials $\left(2 x^{3}-5 x^{2}+x+a\right)$ and $\left(a x^{3}+2 x^{2}-3\right)$ when divided by $(x-2)$ leave the remainder R_{1} and R_{2} respectively. Find the value of ' a ' in each of the following cases.
$\mathrm{R}_{1}=\mathrm{p}(2)$
$\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{3}-5 \mathrm{x}^{2}+\mathrm{x}+\mathrm{a}$
$\mathrm{p}(2)=2(2)^{3}-5(2)^{2}+2+\mathrm{a}$
$\mathrm{R}_{1}=2(8)-5(4)+2+\mathrm{a}$
$\mathrm{R}_{1}=16-20+2+\mathrm{a}$
$\mathrm{R}_{1}=-2+\mathrm{a}$
$\mathrm{R}_{2}=\mathrm{p}(2)$
$\mathrm{p}(\mathrm{x})=\mathrm{ax}^{3}+2 \mathrm{x}^{2}-3$
$\mathrm{R}_{2}=\mathrm{a}(2)^{3}+2(2)^{2}-3$
$\mathrm{R}_{2}=8 \mathrm{a}+2(4)-3$
$\mathrm{R}_{2}=8 \mathrm{a}+8-3$
$\mathrm{R}_{2}=8 \mathrm{a}+5$
(i) $\mathrm{R}_{1}=\mathrm{R}_{2}$
$-2+a=8 a+5$
$-8 a+a=2+5$
$-7 a=7$
$\mathrm{a}=-1$
(ii) $2 \mathrm{R}_{1}+\mathrm{R}_{2}=0$
$2(-2+a)+8 a+5=0$
Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286

SSLC CLASS NOTES - CHAPTER 8

$-4+2 a+8 a+5=0$
$10 a+1=0$
$10 a=-1$
$\mathrm{a}=\frac{-1}{10}$
(iii) $\mathrm{R}_{1}-2 \mathrm{R}_{2}=0$
$-2+a-2(8 a+5)=0$
$-15 \mathrm{a}-12=0$
$\mathrm{a}=\frac{-12}{15}$
$\mathrm{a}=\frac{-4}{5}$

ILLUSTRATIVE EXAMPLES

Example 1: Show that $(x+2)$ is a factor of the polynomial $\left(x^{3}-4 x^{2}-2 x+20\right)$
Sol. Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}-2 \mathrm{x}+20$
By factor theorem, $(x+2)$ is a factor of $p(x)$ if $p(-2)=0$.
\therefore It is sufficient to show that $(\mathrm{x}+2)$ is a factor of $\mathrm{p}(\mathrm{x})$.
Now, $p(x)=x^{3}-4 x^{2}-2 x+20$
$\therefore \mathrm{p}(-2)=(-2)^{3}-4(-2)^{2}-2(-2)+20=-8-16+4+20=0$
$\therefore(\mathrm{x}+2)$ is a factor of $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}-2 \mathrm{x}+20$
Example 2: Show that $(x-1)$ is a factor of $\left(x^{n}-1\right)$.
Sol. Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}-1$
In order to show that $(x-1)$ is a factor of $\left(x^{n}-1\right)$, it is
sufficient to show that $p(1)=0$. Now, $p(x)=x^{n}-1$
$\therefore \mathrm{p}(1)=1^{\mathrm{n}}-1=1-1=0$
$\therefore(\mathrm{x}-1)$ is a factor of $\left(\mathrm{x}^{\mathrm{n}}-1\right)$
Example 3: Find the value of a, if $(x-a)$ is a factor of $\left(x^{3}-a^{2} x+x+2\right)$.
Sol. Let $p(x)=x^{3}-a^{2} x+x+2$
By factor theorem, $(x-a)$ is a factor of $p(x)$, if $p(a)=0$.
$\therefore \mathrm{p}(\mathrm{a})=\mathrm{a}^{3}-\mathrm{a}^{2} \cdot \mathrm{a}+\mathrm{a}+2=\mathrm{a}^{3}-\mathrm{a}^{3}+\mathrm{a}+2=\mathrm{a}+2$
$\therefore \mathrm{a}+2=0 \Rightarrow \mathrm{a}=-2$
Example 4: Without actual division, prove that $\left(x^{4}-4 x^{2}+12 x-9\right)$ is exactly divisible by $\left(x^{2}+2 x-3\right.$
Sol: Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{4}-4 \mathrm{x}^{2}+12 \mathrm{x}-9$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}-3$
$g(x)=(x+3)(x-1)$
Hence, $(x+3)$ and $(x-1)$ are factors of $g(x)$
In order to prove that $\mathrm{p}(\mathrm{x})$ is exactly divisible by $\mathrm{g}(\mathrm{x})$, it is sufficient to prove that $\mathrm{p}(\mathrm{x})$
is exactly divisible by $(x+3)$ and $(x-1)$
\therefore Let us show that $(x+3)$ and $(x-1)$ are factors of $p(x)$
Now, $p(x)=x^{4}-4 x^{2}+12 x-9$
$p(-3)=(-3)^{4}-4(-3)^{2}+12(-3)-9=81-36-36-9=81-81 \Rightarrow p(-3)=0$

SSLC CLASS NOTES - CHAPTER 8

$\mathrm{p}(1)=(1)^{4}-4(1)^{2}+12(1)-9=1-4+12-9=13-13 \Rightarrow \mathrm{p}(1)=0$
$\therefore(\mathrm{x}+3)$ and $(\mathrm{x}-1)$ are factors of $\mathrm{p}(\mathrm{x}) \square \mathrm{g}(\mathrm{x})=(\mathrm{x}+3)(\mathrm{x}-1)$ is also a factor of $\mathrm{p}(\mathrm{x})$.
Hence, $p(x)$ is exactly divisible by $g(x)$. i.e., $\left(x^{4}-4 x^{2}+12 x-9\right)$ is exactly divisible by $\left(x^{2}+2 x-3\right.$

Exercise - 8.4

1. In each of the following cases, use factor theorem to find whether $g(x)$ is a factor of the polynomial $p(x)$ or not.
(i) $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+6 \mathrm{x}-20 \quad \mathrm{~g}(\mathrm{x})=\mathrm{x}-2$
$p(x)=x^{3}-3 x^{2}+6 x-20$
If $g(x)=x-2$ is the factor of $p(x)=x^{3}-3 x^{2}+6 x-20$ then $p(2)=0$
$\mathrm{p}(2)=2^{3}-3(2)^{2}+6(2)-20$
$\mathrm{p}(2)=8-12+12-20$
$p(2)=-12$
$p(2) \neq 0$
$\therefore \mathrm{g}(\mathrm{x})=\mathrm{x}-2$ is not the factor of $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+6 \mathrm{x}-20$
(ii) $p(x)=2 x^{4}+x^{3}+4 x^{2}-x-7 \quad g(x)=x+2$

If $\mathrm{g}(\mathrm{x})=\mathrm{x}+2$ is the factor of $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{4}+\mathrm{x}^{3}+4 \mathrm{x}^{2}-\mathrm{x}-$ then $\mathrm{p}(-2)=0$
$\mathrm{p}(-2)=2(-2)^{4}+(-2)^{3}+4(-2)^{2}-(-2)-7$
$\mathrm{p}(-2)=2(16)+(-8)+4(4)-(-2)-7$
$\mathrm{p}(-2)=32-8+16+2-7$
$p(-2)=35$
$\mathrm{p}(-2) \neq 0$
$\therefore \mathrm{g}(\mathrm{x})=\mathrm{x}+2$ is not the factor of $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{4}+\mathrm{x}^{3}+4 \mathrm{x}^{2}-\mathrm{x}-7$
(iii) $p(x)=3 x^{4}+3 x^{2}-4 x-11 \quad g(x)=x-\frac{1}{2}$

If $g(x)=x-\frac{1}{2}$ is the factor of $p(x)=3 x^{4}+3 x^{2}-4 x-11$ then $p\left(\frac{1}{2}\right)=0$.
$\mathrm{p}\left(\frac{1}{2}\right)=3\left(\frac{1}{2}\right)^{4}+3\left(\frac{1}{2}\right)^{2}-4\left(\frac{1}{2}\right)-11$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{3}{16}+\frac{3}{4}-2-11$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{3}{16}+\frac{3}{4}-13$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{3+12-208}{16}$
$\mathrm{p}\left(\frac{1}{2}\right)=\frac{193}{16}$
$p\left(\frac{1}{2}\right) \neq 0$
$\therefore \mathrm{g}(\mathrm{x})=\mathrm{x}-\frac{1}{2}$ is not the factor of $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{4}+3 \mathrm{x}^{2}-4 \mathrm{x}-11$
(iv) $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{3}+\mathrm{x}^{2}-20 \mathrm{x}+12 \quad \mathrm{~g}(\mathrm{x})=3 \mathrm{x}-2$

If $g(x)=3 x-2$ is the factor of $p(x)=3 x^{3}+x^{2}-20 x+12$ then $p\left(\frac{2}{3}\right)=0$
$\mathrm{p}\left(\frac{2}{3}\right)=3\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{2}-20\left(\frac{2}{3}\right)+12$
$\mathrm{p}\left(\frac{2}{3}\right)=3\left(\frac{8}{27}\right)+\left(\frac{4}{9}\right)-20\left(\frac{2}{3}\right)+12$
$\mathrm{p}\left(\frac{2}{3}\right)=\frac{8}{9}+\frac{4}{9}-\frac{40}{3}+12$
Yakub S.,GHS Nada, Belthangady Taluk, D.K., 574214. Ph: 9008983286

SSLC CLASS NOTES - CHAPTER 8

$\mathrm{p}\left(\frac{2}{3}\right)=\frac{8+4-120+108}{9}$
$\mathrm{p}\left(\frac{2}{3}\right)=\frac{0}{9}$
$\mathrm{p}\left(\frac{2}{3}\right)=0$
$\therefore \mathrm{g}(\mathrm{x})=\mathrm{x}-\frac{1}{2}$ is the factor of $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{4}+3 \mathrm{x}^{2}-4 \mathrm{x}-11$
(iv) $p(x)=2 x^{4}+3 x^{3}-2 x^{2}-9 x-12 \quad g(x)=x^{2}-3$

If $g(x)=x^{2}-3$ is the factor of $p(x)=2 x^{4}+3 x^{3}-2 x^{2}-9 x-12$ then $p(\sqrt{3})=0$ and
$p(-\sqrt{3})=0$.
$\mathrm{p}(\sqrt{3})=2(\sqrt{3})^{4}+3(\sqrt{3})^{3}-2(\sqrt{3})^{2}-9(\sqrt{3})-12$
$p(\sqrt{3})=2(9)+3(3 \sqrt{3})-2(3)-9(\sqrt{3})-12$
$p(\sqrt{3})=18+9 \sqrt{3}-6-9 \sqrt{3}-12$
$p(\sqrt{3})=18-18+9 \sqrt{3}-9 \sqrt{3}$
$\mathrm{p}(\sqrt{3})=0$
$\mathrm{p}(-\sqrt{3})=2(-\sqrt{3})^{4}+3(-\sqrt{3})^{3}-2(-\sqrt{3})^{2}-9(-\sqrt{3})-12$
$p(-\sqrt{3})=2(9)-3(3 \sqrt{3})-2(3)-9(\sqrt{3})-12$
$p(-\sqrt{3})=18-9 \sqrt{3}-6+9 \sqrt{3}-12$
$p(-\sqrt{3})=18-18-9 \sqrt{3}+9 \sqrt{3}$
$p(-\sqrt{3})=0$
$\therefore g(x)=x^{2}-3$ is the factors of $p(x)=2 x^{4}+3 x^{3}-2 x^{2}-9 x-12$
2. If the factor of $x^{3}-3 x^{2}+a x-10$ is $(x-5)$ then find the value of ' a '

If $(x-5)$ is the factor of $x^{3}-3 x^{2}+a x-10$ then $p(5)=0$
$p(x)=x^{3}-3 x^{2}+a x-10$
$\mathrm{p}(5)=0$
$5^{3}-3(5)^{2}+5 a-10=0$
$125-75+5 a-10=0$
$5 \mathrm{a}=-40$
$a=-8$
3. If $\left(x^{3}+a x^{2}-b x+10\right)$ is divisible by $x^{2}-3 x+2$, find the values of a and b
$\left(x^{2}-3 x+2\right)$
$\left(x^{2}-2 x-x+2\right)$
$x(x-2)-1(x-2)$
$(x-2)(x-1)$
If $\left(x^{2}-3 x+2\right)$ is the factor of $\left(x^{3}+a x^{2}-b x+10\right)$ then $p(2)=0$ and $p(1)=0$
$p(2)=\left(x^{3}+a x^{2}-b x+10\right)$
$p(2)=0$
$\Rightarrow 2^{3}+\mathrm{a}(2)^{2}-2 \mathrm{~b}+10=0$
$\Rightarrow 8+4 \mathrm{a}-2 \mathrm{~b}+10=0$
$\Rightarrow 4 \mathrm{a}-2 \mathrm{~b}=-18$
$p(1)=0$
$\Rightarrow 1^{3}+\mathrm{a}(1)^{2}-\mathrm{b}+10=0$
$\Rightarrow 1+\mathrm{a}-\mathrm{b}+10=0$
$\Rightarrow \mathrm{a}-\mathrm{b}=-11$
From (1) and (2)
$4 a-2 b=-18$
$a-b=-11-------M u l t i p l y$ by 2
$4 a-2 b=-18$

$2 \mathrm{a}-2 \mathrm{~b}$	$=-22$
2 a	$=4$

$\mathbf{a}=2$
Substitute $\mathrm{a}=2$ in (1),
$4(2)-2 b=-18$
$8-2 b=-18$
$-2 b=-18-8$
$-2 b=-26$
$\mathrm{b}=13$
4. If both $(x-2)$ and $\left(x-\frac{1}{2}\right)$ are factors of $\left(a x^{2}+5 x+b\right)$ then, prove that $a=b$.

If $(x-2)$ is the factor of $\left(a x^{2}+5 x+b\right)$ then $p(2)=0$
$\mathrm{p}(x)=\mathrm{ax}^{2}+5 \mathrm{x}+\mathrm{b}$
$p(2)=0$
$\mathrm{a}(2)^{2}+5(2)+\mathrm{b}=0$
$4 a+10+b=0$
$4 a+b=-10$
If $\left(\mathrm{x}-\frac{1}{2}\right)$ is the factor of $\left(\mathrm{ax}^{2}+5 \mathrm{x}+\mathrm{b}\right)$ then, $\mathrm{p}\left(\frac{1}{2}\right)=0$
$\mathrm{p}(x)=\mathrm{ax}^{2}+5 \mathrm{x}+\mathrm{b}$
$p\left(\frac{1}{2}\right)=0$
$a\left(\frac{1}{2}\right)^{2}+5\left(\frac{1}{2}\right)+b=$
$\frac{a}{4}+\frac{5}{2}+\mathrm{b}=0$
$\frac{a+10+4 b}{4}=0$
$a+10+4 b=0$
$a+4 b=-10$
$a+4 b=-10-------M u l t i p l y$ by 4
$4 a+16 b=-40$
From (1) and (3)
$4 a+b=-10$
$4 a+16 b=-40$
$-15 b=+30$
$b=-2$
Substitute $b=-2$ in (1) then,
$4 a-2=-10$
$4 a-2=-10+2$
$4 a=-8$
$a=-2$
$\therefore \mathrm{a}=\mathrm{b}$

ILLUSTRATIVE EXAMPLES

Example 1: Divide $3 x^{3}+11 x^{2}+34 x+106$ by $x-3$

$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1 1}$	$\mathbf{- 3 4}$	$\mathbf{1 0 6}$
		9	60	282
	3	20	94	388

\therefore the quotient is $3 x^{2}+20 x+94$ and the remainder is 388 .
Example2; Divide $x^{6}-2 x^{5}-x+2$ by $x-2$

$\mathbf{2}$	$\mathbf{1}$	$\mathbf{- 2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{- 1}$	$\mathbf{2}$
	1	2	0	0	0	0	-2
	1	0	0	0	0	-1	0

\therefore the quotient is $\mathrm{x}^{5}-1$ and remainder is 0

Exercise - 8.5

1. Find the quotient and remainder using synthetic division.
(i) $\left(x^{3}+x^{2}-3 x+5\right) \div(x-1)$

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{- 3}$	$\mathbf{5}$
		1	2	-1
	1	2	-	4

\therefore the quotient is $\mathrm{q}(\mathrm{x})=\mathrm{x}+2 \mathrm{x}-1$ and remainder is $\mathrm{r}(\mathrm{x})=4$
(ii) $\left(3 x^{3}-2 x^{2}+7 x-5\right) \div(x+3)$

$\mathbf{- 3}$	$\mathbf{3}$	$\mathbf{- 2}$	$\mathbf{7}$	$\mathbf{- 5}$
		-9	33	-120
	3	-11	40	-125

\therefore the quotient is $\mathrm{q}(\mathrm{x})=3 \mathrm{x}^{2}-11 \mathrm{x}-40$ and remainder is $\mathrm{r}(\mathrm{x})=-125$
(iii) $\left(4 x^{3}-16 x^{2}-9 x-36\right) \div(x+2)$

$\mathbf{- 2}$	$\mathbf{4}$	$\mathbf{- 1 6}$	$\mathbf{- 9}$	$\mathbf{- 3 6}$
		-8	48	-78
	4	-24	39	-114

\therefore the quotient is $\mathrm{q}(\mathrm{x})=4 \mathrm{x}^{2}-24 \mathrm{x}+39$ and remainder is $\mathrm{r}(\mathrm{x})=-114$
(iv) $\left(6 x^{4}-29 x^{3}+40 x^{2}-12\right) \div(x-3)$

$\mathbf{3}$	$\mathbf{6}$	$\mathbf{- 2 9}$	$\mathbf{4 0}$	$\mathbf{0}$	$\mathbf{- 1 2}$
		18	$\mathbf{- 3 3}$	21	63
	6	-11	7	21	51

\therefore the quotient is $\mathrm{q}(\mathrm{x})=6 \mathrm{x}^{3}-11 \mathrm{x}^{2}+7 \mathrm{x}+21$ and remainder is $\mathrm{r}(\mathrm{x})=51$
(v) $\left(8 x^{4}-27 x^{2}+6 x+9\right) \div(x+1)$

$\mathbf{- 1}$	$\mathbf{8}$	$\mathbf{0}$	$\mathbf{- 2 7}$	$\mathbf{6}$	$\mathbf{9}$
		-8	8	19	-25
	8	-8	-19	25	-16

\therefore the quotient is $\mathrm{q}(\mathrm{x})=8 \mathrm{x}^{3}-8 \mathrm{x}^{2}-19 \mathrm{x}+25$ and remainder is $\mathrm{r}(\mathrm{x})=-16$

SSLC CLASS NOTES - CHAPTER 8
(vi) $\left(3 x^{3}-4 x^{2}-10 x+6\right) \div(3 x-2)$

$\frac{2}{3}$	3	-4	$\mathbf{- 1 0}$	$\mathbf{6}$
		2	$\frac{-4}{3}$	$\frac{-68}{9}$
	3	-2	$\frac{-34}{3}$	$\frac{-14}{9}$

\therefore the quotient is $\mathrm{x}^{2}-\frac{2}{3} \mathrm{x}-\frac{34}{9}$ and remainder is $\mathrm{r}(\mathrm{x})=\frac{-14}{9}$
(vii) $\left(8 x^{4}-2 x^{2}+6 x-5\right) \div(4 x+1)$

$-\frac{\mathbf{1}}{4}$	$\mathbf{8}$	$\mathbf{0}$	$\mathbf{- 2}$	$\mathbf{6}$	$\mathbf{- 5}$
		-2	$\frac{1}{2}$	$\frac{3}{8}$	$\frac{-51}{32}$
	8	-2	$\frac{-3}{2}$	$\frac{51}{8}$	$\frac{-211}{32}$

\therefore the quotient is $\mathrm{q}(\mathrm{x})=2 \mathrm{x}^{3}-\frac{1}{2} \mathrm{x}^{2}-\frac{3}{8} \mathrm{X}+\frac{51}{32}$ and remainder is $\mathrm{r}(\mathrm{x})=\frac{-211}{32}$
(viii) $\left(2 \mathrm{x}^{4}-7 \mathrm{x}^{3}-13 \mathrm{x}^{2}+63 \mathrm{X}-48\right) \div(2 \mathrm{x}-1)$

$\frac{1}{2}$	$\mathbf{2}$	-7	-13	$\mathbf{6 3}$	-48
		1	-3	-8	$\frac{55}{2}$
	2	-6	-16	55	$\frac{-41}{2}$

\therefore the quotient is $\mathrm{q}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}-8 \mathrm{X}+\frac{55}{2}$ and remainder is $\mathrm{r}(\mathrm{x})=\frac{-41}{2}$
2. If the quotient obtained on dividing $\left(x^{4}+10 x^{3}+35 x^{2}+50 x+29\right)$ by $(x+4)$ is $\left(x^{3}-\right.$
$a x^{2}+b x+6$) then find a, b and also the remainder
$\left(x^{4}+10 x^{3}+35 x^{2}+50 x+29\right) \div(x+4)$

-4	1	10	35	50	29
		-4	-24	-44	-24
	1	6	11	6	5

$\mathrm{q}(\mathrm{x})=\mathrm{x}^{3}+6 \mathrm{x}^{2}+11 \mathrm{x}+6 ; \quad \mathrm{r}(\mathrm{x})=5$
By Comparing $x^{3}-a x^{2}+b x+6$ and $x^{3}+6 x^{2}+11 x+6$
$-a=6 \Rightarrow a=-6$ దుత్తు $b=11 ; r(x)=5$
3. If the quotient obtained on dividing $\left(8 x^{4}-2 x^{2}+6 x-7\right)$ by $(2 x+1)$ is
$\left(4 x^{3}+p x^{2}-q x+3\right)$ then find p, q and also the remainder.
$\left(8 x^{4}-2 x^{2}+6 x-7\right) \div(2 x+1)$

$-\frac{1}{2}$	$\mathbf{8}$	$\mathbf{0}$	$\mathbf{- 2}$	$\mathbf{6}$	$\mathbf{- 7}$
		-4	2	0	-3
	8	-4	0	6	-10

$\mathrm{q}(\mathrm{x})=\left(8 \mathrm{x}^{3}-4 \mathrm{x}^{2}+6\right) \frac{1}{2} \Rightarrow \mathrm{q}(\mathrm{x})=4 \mathrm{x}^{3}-2 \mathrm{x}^{2}+3$
$\mathrm{r}(\mathrm{x})=-10$
By Comparing $4 \mathrm{x}^{3}+\mathrm{px}^{2}-\mathrm{qx}+3$ and $4 \mathrm{x}^{3}-2 \mathrm{x}^{2}+3$
$p=-2$ దుత్తు $q=0 ; r(x)=-10$

